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Integral equations are used to calculate ion beams in a selfconsistent spacecharge- 
flow simulation. A charge-free solution is found, then an iterative process is used to 
determine new fields and the distribution of charge within the domain. 

Child’s law is assumed to describe ion emission in the region of the emitter, and the 
remaining distribution is found by correlating trajectories representative of ions within 
the beam. 

Integral equations lead to a straightforward formulation for the charge density 
immediately in front of the ion-emitter in terms of the potentials for these locations 
which were obtained in the previous iteration. Advantages of the integral equation 
approach are that field equations need be solved one time only and subsequent iterated 
values of the field for updated charge e&mates are found by a matrix multiplication. 
In addition, the gradient values needed to calculate the trajectories are in analytical 
form. An example of a planar election flow gun is used to demonstrate the approach of 
this paper. 

1. IN-I-ROD~CTION 

In recent years electron or ion flow problems have been formulated and solved 
for a great number of physical configurations using digital computers to carry out 
the computational burden. Two fine examples of these efforts are by Boers [l] 
and Hamza [2]. Other examples may be found in the survey article by Amboss [3]. 
The sinndations are often a small cost compared to the actual device construction, 
plus the simulation is often easier to use in a study of design variations. 

The density of the ion beams may be very low, such that space-change effects 
are negligible as in electron optical devices [4-6] or the charge may be significant 
[I, 21 in which case Poisson’s equation determines the fields within the device. 
When the space charge is a large contribution, one may employ the iterative 
procedure of Hamza [2] in which the fields are calculated by finite differences then 
the space charge is found by solving the Lorentz force laws on electrons represen- 
tative of segments of the ion beam. The new estimate of the beam is used in 
Hamza’s method to improve the field calculation until there is no further change 
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with successive iterations. Convergence of this method is proven for the one- 
dimensional case [2], and there is apparently no difficulty for two-dimensional 
configurations. During the process of solving for the ion motion, one is required 
to approximate the gradients from discrete potential values which result from the 
finite difference solution to Poisson’s equation. Errors introduced in the resulting 
ion trajectories, even though small, are difficult to estimate quantitatively. 

The development of integral equation methods [5-81 has provided a means for 
improving the space-charge flow technique of Hamza. Integral equation methods 
offer the advantages of less computational effort for simulations employing a large 
number of finite difference mesh points as well as an analytical expression for the 
gradients. It is the purpose of this paper to develop a space-charge flow simulation 
using an integral equation technique. The development will not be the most general, 
but the principles discussed may be readily extended to other situations. 

2. THE INTEGRAL EQUATION APPROACH 

Consider the closed domain in x - y space whose boundary consists of a 
combination of conductors at given potentials or else boundaries in which the 
potential gradient is known. In other words, the Dirichlet or Neumann boundary 
conditions are given. Assume also that the device has an electron-emitting cathode 
and the fields are such that a beam is formed. The general area of the beam is 
considered to be known, and perhaps may constitute the entire domain. The 
fields inside the domain are given by Poisson’s equation 

W(X> Y) = -p(x, Y)/% , (1) 

where 4 is the potential (volts), p is the space charge (C/m3), Ed the dielectric 
constant of free space, and V the de1 operator. 

To solve (1) using the integral equation method, the charge on the boundaries is 
found by using a Green’s function approach [7,9], or alternately, one may assume 
the boundary has a dipole distribution [6]. The dipole assumption leads to simpler 
integrals and will be used here. In either case, the potential at any point in the 
domain may be written as 

#(x, Y) = j- 4s) gds, x, Y) ds + j- gdx, Y, x’s Y’) ,4x’, Y’) dx’ d”, (2) 

where g, and g2 are the respective Green’s functions, U(S) is the dipole distribution 
and the space charge is p(x’, y’). Except for simple cases this integral cannot be 
evaluated, so that it is necessary to approximate the boundary by a series of 
straight line or curved segments [5,6, 81 which may be evaluated in closed form 
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or lead to well known integral expressions. In addition, the continuous distribution 
p(x, JJ) does not lend itself to closed form integration so it is necessary to approx- 
imate the function by a piecewise constant distribution. 

Let the boundary of the device be closed and consist of N straight line conductor 
segments of finite length Ii each held at potential ui , i = 1,2,..., N and assume 
that each segment has a dipole charge layer. In the notation of Fig. 1, the potential 

FIG. 1. Configuration of the two-dimensional charged particle beam. 

at a point in the domain due to a dipole charged strip (extending infinitely in and 
out of the figure plane) is given by 

where the kernal of the integral is the g, Green’s function given in Eq. (2). 
Evaluating (3) the potential at (x, JJ) due only to segment j is 

where infinity has zero potential. For N boundary segments 

&9 Y) = & $l oj@i f f gz(X, Y, ~‘3 Y’) p(x’t Y’) dx’ dy’, 

and the 8j are given by Eq. (4). Note that b1 + 0, + ..A + 8, = 2~. 
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Next, in order that the potential function be bounded for all points within the 
space-charge region, let the space charge be approximated by M cylinders with 
radius b and a uniform distribution whose radii do not overlap and whose 
potential is given by 

V 
PK” 

OK - - if we have 
#K(r) = 

voK - + (4 + log r/b) 

r < b, 
(6) 

if r > b. 

uOK is the potential at the center of the Kth cylinder of charge with reference to the 
dipoles. This distribution is equivalent to the assumption required when a finite 
difference method is directly applied to Eq. (l), in which case the potential at any 
meshpoint must have a density for the right side of (1) which is distributed over 
a mesh box surrounding this point. A point charge leads to an unbounded Green’s 
function in subsequent steps. 

Including Eq. (6) into Eq. (5) one obtains 

+(x, u) = ~/2’%7 tl ‘& + il {%K - (pKb%,)(# + 1% rK/b)}, (7) 

where rK2 = (xk - x)” + ( yK - JJ)” and (x, u) is assumed to be outside of the 
cylinder of charge. In order to apply the Green’s function technique, Eq. (7) is 
evaluated for a test point at the midpoint of each of the N boundary segments 
whose potential is specified. This results in the matrix equation 

4 

v= yz 

I:1 

= Ca + vd11, + &J, (8) 
UN 

where VO is a scalar sum of the reference potentials, [IIN is a column of N ones, 
and C is an N x N matrix with S/26,, on the diagonal and the sum of all elements 
in each row totals S/c, . E is an N x M matrix whose elements are 

e, = (--b*/k,)[l + log{(xj - xi)” + (vi - y3”>/b23 (9 

and i corresponds to the midpoint of the ith boundary segment andj the coordinates 
of the jth charge cylinder. u and e aer the vectors corresponding to the dipoles and 
charge in Eq. (7). For a convex domain C is both positive and diagonally dominant, 
so is nonsingular [9], and for a nonconvex region, it may be partitioned into 
nonsingular diagonal submatrices. Hence, Eq. (8) may be solved for the dipole 
densities on the boundary 

a = C-l{V - V,[l], - Ep}. (10) 
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However, as we consider the space charge to be known, the potential at the 
center of each space charge cylinder must be determined by the domain and 
boundary potentials, so that application of Eq. (7) at these points yields 

@ = Fa + V,,/ll, + HP, (11) 

where F is an M x N matrix whose row’s sum is S/E, , [ 1 lM is an M column of ones, 
and H is it4 x M with zeros on the diagonal and other elements of a form derived 
from Eq. (9). Organizing the derivation of Eqs. (8) and (11) in this manner leads 
to an expression for Cp which is significant in the space-charge-flow analysis. Next 
substitute Eq. (10) into Eq. (11) in order to obtain 

+ = {H - FC-%)p + FC-lV + V,([l], - FC-l[l],}. (12) 

A careful examination of the properties of the above expression shows that 
FC-l[ llN = [ llM at least for this case of Dirichlet boundary conditions, and, hence, 
the equation reduces to 

Cp = {H - FC-%}p + FC-W. (13) 

This is a very concise expression for the potential at each of the charge cylinder 
centers. If one reflects Neumann type boundaries about the line on which they are 
given, it can be argued that an expression such as (13) is also obtained, but of 
correspondingly higher order. Equation (13) demonstrates the linearity of the 
analysis to this point in the sense that the field potential is the superposition of 
space charge and applied boundary potentials. Furthermore, there is no restriction 
on the number of cylinders which approximate the ion or electron beam as one 
may select M > N or M < N. 

3. SPACE-CHARGE-FLOW CALCULATION 

The self-consistent space-charge-flow simulation [2] is shown schematically in 
Fig. 2. The process is started by the input of the device geometry, physical materials 
and initial space charge density p(x, JJ) = 0 (although an initial guess may be 
made for p). The active emitter surface shown in Fig. 1 has charged particles 
drawn from it or suppressed according to the local normal fields. Specifically, the 
emitter is considered a planar diode which emits according to Child’s law 

Ja = W9 4WWaWY(~, - W2, (14) 

where the following definitions are used: Ja = current density (A/m2); 
G,, = 8.855 x 10-l’ F/m; q/m = ratio of ion charge to rest mass (C/Kg); 
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FIG. 2. General flow chart for space-charge-flow simulation. 

C& = emitter voltage; C& = field voltage at distance d away from emitter; 
d = distance in meters from emitter to point C& . 

It is clear that Eq. (14) must have & - c$& > 0 in order that negative ions be 
drawn from the emitter, which implies that d is outside a possible space-charge 
cloud in the vicinity of the emitter. If & - rJe < 0 this region of the emitter is 
“cut off” and it is seen that estimates of the active area could change with iteration 
in Fig. 2. This may be especially true for high current density devices. 

Given that the active area of the emitter is closely estimated, then within the 
beam at every point 

J = PY, (15) 

where y is the beam velocity (m/set). Equation (14) represents the initial or 
starting set of values for Eq. (15) with the velocity given by yd2 = 2(& - #q/m. 
In order to obtain subsequent values for p and y, it is necessary to trace the 
trajectories of selected ions through the device [l, 21. These are considered represen- 
tative of ions emitted in the immediate area and their location is determined from 
electric and magnetic forces on the ion given by the Lorentz force law 

(16) 

where the symbols have their usual meanings in x - y coordinates. The magnetic 
fields may be due to permanent magnet pole pieces, excited coils external to the 
device, or from the self-generated field of the current beam. It is assumed in this 
analysis that the magnetic field effects are small. Notice that using Q found from 
Eq. (13) and Q then given by Eq. (IO), that Eq. (7) may be analytically differentiated 
to yield the exact gradient at any point, e.g., 

3 -4 = T<x,~) = (17) 



SELF-CONSISTENT SPACE-CHARGE-FLOW 557 

where one term of the summation K = l,..., M uses the alternate form of Eq. (6) if 
(x, y) lies inside a charge cylinder. The accuracy of calculating trajectories by 
Eq. (16) is dependent on the field data and numerical integration routine. One 
thereby avoids the problem of approximating the gradient from discrete potential 
data when using integral equations. 

The trajectories are assumed to start at the cathode with zero tangential velocity, 
This is done for simplicity, and effects such as chromatic aberrations which define 
crossover beams widths and ultimately screen spot sizes should be treated by 
considering a distribution in ion normal and tangential emission energies [3, 51. 
Usually the principal ray ion normal energy used in Child’s law is a very small 
percentage of the total energy the ion acquires in the simulation. In selecting the 
number and location of trajectories at the cathode, one employs some “rule of 
the thumb” such as developed in Ref. [1] which found that at least one trajectory 
per finite difference mesh at the cathode should be used to prevent convergence 
to an incorrect answer. In the integral equation one may reach the same con- 
clusion, for the analogous situation is the boundary should be finely subdivided 
in the cathode area because this is the most critical region of the device. 

The current density profile found at the cathode by Child’s law, Eq. (14) is fitted 
with a p - 1 order normalized polynomial 

‘11-l 
Jo(Y) = c %YK O<Y<l, 

K=O 

where p represents the number of trajectories traced through the device. At 
locations “downstream” where charge density data is required for subsequent 
iterations, a correlation is set up to compare the new distribution with cathode. 
(A line of reference, or beam symmetry line is very useful in the correlation.) This 
yields a scatter of points in the first quadrant of a planar graph. If the x-axis is 
a line of symmetry, a second polynomial is used in a “least-squares” fit through, 
the set of points (for notation purposes, 2 = y) 

L 

corr = C cJ1, 
14 

and the best cz coefficients minimize the quadratic performance index 

8-l 

error = C YKO - i 
K-l I 14 

(20) 

In this last expression yxo represents the cathode (initial) y location of the trajectory 
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and Z,, represents its y location at some downstream location. Using these values 
of cl , the new current distribution is 

(21) 

where 01 is a normalization factor used to assure continuity at the new location 

1 0 = (emitter current) 
JY Jib9 & * 

cm 

Notice that beam dispersions are possible in the derivation of Eqs. (19)-(22). As 
the final step, the charge density is obtained by 

9 
pii = J*hY%v. I where v,,. = l/p c VKi , (23) 

K-l 

where v,,,. is the average velocity over all trajectories at the ith location. 
There are other and perhaps more suitable methods to calculate the charge 

density throughout the device. However, in any of these methods, the fundamental 
assumption is that cathode emission is space charge limited by the field imme- 
diately in front of the cathode and described by Child’s law. Subsequent calcuIations 
for the downstream beam current density and velocity are deterministic, bounded 
functions of the initial beam conditions given by Child’s law and modified by 
Eq. (16). Therefore, in order to establish the iterative scheme shown in Fig. 2 does 
converge for the self-consistent calculation, it is sufficient to prove that the charge 
density in front of the emitter is a stable calculation versus iteration. This property 
may be derived from Eq. (13). 

4. CONVERGENCE CONSIDERATIONS 

In Eq. (13), let the Q, vector be partitioned such that the fist p elements represent 
the potentials at normal distance, 6, from the cathode. Trajectories are to be 
calculated through these points. At these locations the charge density for the 
(m + 1) iteration is calculated from the field of the mth iteration as given by 
Child’s law 

Pi Im+l = (W9W(~~ - $sknth iteration i = I,2 ,..., p, (24) 

and one may choose 4., = 0 with no loss in generality. Then an iterative scheme 
to calculate new values for the space charge in front of the cathode as shown in 
Fig. 2 is 

pi lm+l = pi lm + 4errorl = pi Im + N4d9W k I, - pi IA (25) 
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where w is called the relaxation factor. In terms of the p vector the above equation is 

p Im+l = (1 - o) IP Im + (w4~,/9b3{H - FCIE}p Im + (w4r$9b2) FC-lV, (26) 

where the i = 1,2, 3 ,..., p elements are of concern here. This iterative scheme 
converges to a steady solution [9] if the eigenvalues of the M x M matrix 

G = (1 - o)l + (o4~/9b~){H - FC-lE} (27) 

are less than unity in absolute magnitude. A meaningful bound in the eigenvalues 
is difficult to obtain from the G matrix, but a numerical example will demonstrate 
convergence and a dependency on the parameter w. 

It is noteworthy that integral equations in a self-consistent field calculation 
require the inverse C-l to be calculated only one time. In Eq. (13) FC-IV is a 
constant vector and H - FC-lE is a constant matrix used to repeatedly calculate 
new values of *. 

5. AN EXAMPLE 

Consider the electron gun design discussed by Pierce [lo] which is shown in 
Fig. 3. This is one of the few closed form solutions [l l] available to check the 
theory of the preceding sections. The electron flow in the x-direction is assumed to 

FIG. 3. The rectilinear electron flow gun of Pierce and the integral equation. 



560 G. L. KUSIC 

be space-charge-limited, and to be emitted from a cathode forming the boundary 
x = 0. The current density in the beam is given by Eq. (14) and the closed form 
solution [IO] for potentials in the region outside the beam is 

4 = (&2)4,3 Real{(x + j9)“13} v, = 10,000, Xmax = 0.05, (28) 

where V, is the maximum voltage applied at x = xmax and j = d- 1. The above 
equation indicates the plane at 6’ = 67.5” = tan-“($/lx), along with the cathode, 
is at zero potential. 

In order to provide a meaningful test for the integral equation method presented 
in this paper, a boundary is taken of 19 irregular length segments as indicated 
in Fig. 3. The plane y = 0.0 is assumed to be one of symmetry and, hence, has 
Neumann boundary conditions. The boundary segments, their coordinates and 
boundary conditions are tabulated in Table I. The spacing of the dipoles (Eq. (3)), 
is 6 = 0.000825. With this starting point, the beam and potentials are to be 
calculated and compared with Eqs. (14) and (28). 

We initially assume the beam consists of 20 charge cylinders of radius 
b = 0.00333 and distributed at coordinates (xi, yK) = (0.005 + O.Oli, b + 2M) 
for i = 0, 1, 2, 3,4 and K = 0, 1,2, 3. As the program progresses through its 
iterations charge densities will be assigned to the cylinders, but some may be zero 
as determined by the “edge” of the beam. Notice that voids appear between the 
cylinders. If we multiply the calculated charge by 6/7r this increases the effective 
charge by the ratio of the rectangle area to circle area and thereby accounts for 
the void areas. 

For this problem we compute four trajectories, (although more could be used) 
from x = 0.005 to x = 0.045 using the gradients calculated by forms similar to 
Eq. (17). A two-step Runge-Kutta process was used to integrate these nonlinear 
equations of motion, dZ/dt = f(Z), as follows: 

Z(m + 7) = Z(m) + U,TP + u,TQ, 

where the quantities are defined below 

(29) 

P = f(Z(m)) = 
Q = f(Z(n~ + a,~), m + a& 
a, = a.2 = Q 
u3 = 1 
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TABLE I 

Boundary Data for Example of Section 5 

x, y coordinates 
Boundary 

segment condition 

030 

0.005, 0 

0.01, 0 

0.02,o 

0.03,o 

0.05,o 

0.05,0.01 

0.05,0.02 

0.05,0.03 

0.05,0.04 

0.05,0.05 

0.05,0.06 

0.03,0.06 

0.0167,0.06 

0.0082,0.04 

0.0041,0.03 

0,0.020 

0,0.0133 

0,0.0067 

030 

1 a$jay = 0 

2 a+jay = 0 

3 a+jay = 0 

4 a+jay = 0 

5 a+jay = 0 

6 cj = 10,ooo 

7 4 = 10,ooo 

8 d, = 9911 

9 4 = 9802 

10 4 = 9456 

11 + = 8954 

12 .# = 5894 

13 + = 1609 

14 I)=0 

15 #I=0 

16 #B=o 

17 c$=o 

18 $=O 

19 +=o 
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In this equation 2 is a four element column vector of the trajectory state- 
x-position, x-velocity, y-position, and y-velocity. The time step 7 was chosen such 
that the space displacement per call of the Runge-Kutta was approximately 
dx = 0.002. For this example it was believed that increased accuracy of say a 
four-step Runge-Kutta, or more refined space increments was not necessary. One 
should notice that each call on the Runge-Kutta routine requires both x and y 
direction gradients to be calculated from 19 boundary segments plus 20 distributed 
charge cylinders, so an increase in accuracy costs more computer time. The trajec- 
tory initial conditions are extremely critical and are discussed below. 

As the trajectories are calculated up to each charge plane, x(i) G 0.005 + O.Oli, 
i = 0, 1, 2, 3,4 a new charge density is obtained for the present iteration. Child’s 
law and the velocity calculated at x = 0.005 define the beam at this location. The 
beam is assumed to be of uniform density in the y-direction, so the charge density 
is taken as the average (a0 in Eq. (18)) from the four trajectories traced. At sub- 
sequent locations x GX 0.015, 0.025, 0.035, 0.045, the correlation polynomial 
Eq. (19), is taken to be c,Z and c, then appears in Eq. (21) as a multiplier. The 
next step is determine the “edge” of the beam which is found by examining the 
y position of the trajectory which defined the edge of the beam at the cathode 
(or the maximum y for all trajectories). It is easily seen that the y-coordinate of 
this trajectory, if it does not intersect other trajectories, fixes the number of vertical 
direction charge cylinders at each x-station by 

y(4) > 0.030, > 4 cylinders, 
0.023 < y(4) d 0.030, 4 cylinders, 

0.0167 < y(4) d 0.023, 3 cylinders, 
0.010 < y(4) < 0.0167, 2 cylinders, 

0 < y(4) < 0.010, 1 cylinders, 

(30) 

which is an option routine in the computer program. Finally, the average x-direction 
velocity is used in Eq. (23) to calculate the charge densities. The problem of the 
edge of the beam also arises in other trajectory-tracing methods [2]. 

To begin the iterative scheme of Fig. 2, p = 0 and the matrix C-r is calculated 
using the input data of Table I. For the first iteration when the space charge is 
absent the trajectory data is tabulated in Table II, part A. The trajectories initial 
conditions are evident in the table. Using the relaxation factor w = 0.5, the 
computer program went through additional iterations in order to obtain the 
trajectory data tabulated for the fifth iteration presented in part B of Table II. 
In Table III, the calculated potentials and densities are compared with the true 
solution, where it may be seen the errors are within 6 ‘A of the true values. Consi- 
dering the small number of boundary segments which were used, this is a good 
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TABLE II 

Iteration Results for Example Problem, w = 0.50 
A-&t iteration, p = 0,~ = time increment 

T = 1.6 x lC+ 

7 = 0.9 x lo-‘0 

7 = 0.7 x lo-‘0 

T = 0.6 x lo-lo 

7 = 0.5 x 10-10 

Trajectory x-position x-velocity y-position y-velocity 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

0.004 0.187 x lo+’ 0.005 0.0 
0.004 0.187 x lo+’ 0.010 0.0 
0.004 0.187 x lo+’ 0.015 0.0 
0.004 0.187 x lo+’ 0.020 0.0 

0.637 x 1O-2 0.130 x 108 0.498 x lo-* 0.213 x 106 
0.630 x 1O-2 0.125 x 108 0.991 x 10-Z 0.637 x 108 
0.618 x 1O-2 0.118 x 10s 0.148 x 10-l 0.128 x 10’ 
0.619 x 1O-2 0.118 x lo8 0.196 x 10-l 0.231 x lo7 

0.162 x 10-l 0.290 x 108 0.448 x lo-” 0.203 x lo7 
0.157 x 10-l 0.282 x 10” 0.924 x 1O-2 0.237 x lo7 
0.151 x 10-l 0.272 x 10” 0.137 x 10-l 0.349 x 10’ 
0.151 x 10-l 0.271 x 10s 0.178 x 10-l 0.523 x 10’ 

0.259 x 10-l 0.395 x 10s 0.384 x 1O-2 0,272 x lo1 
0.251 x 10-l 0.385 x 108 0.840 x 1O-2 0.352 x 10’ 
0.270 x 10-l 0.399 x 108 0.121 x 10-l 0.529 x 10’ 
0.270 x 10-l 0.398 x 108 0.156 x 10-l 0.731 x 10’ 

0.364 x 10-l 0.486 x 108 0.304 x IO-” 0.501 x 10’ 
0.353 x 10-I 0.472 x 108 0.741 x lo-~ 0.501 x 10’ 
0.375 x 10-l 0.485 x lOa 0.107 x 10-l 0.653 x 10’ 
0.374 x 10-l 0.485 x 10“ 0.137 x 10-l 0.849 x 10’ 

0.474 x 10-l 0.541 x 108 0.195 x 10-Z 0.294 x 10’ 
0.462 x 10-l 0.542 x 108 0.626 x 1O-2 0.506 x 10’ 
0.458 x 10-l 0.542 x lo8 0.966 x 1O-2 0.659 x 10’ 
0.458 x 10-l 0.545 x 10s 0.123 x lo-’ 0.876 x 10’ 

B-fifth iteration, p # 0,~ = time increment 

7 = 2 x lo-‘0 1 
2 
3 
4 

5 = 1 x 10-10 
1 
2 
3 
4 

0.674 x 1O-2 0.116 x lo8 0.502 x 1O-2 0.158 x 105 
0.669 x lo-% 0.112 x 108 0.995 x 10-Z 0.265 x 10” 
0.666 x 10-Z 0.111 x 108 0.148 x 10-l 0.670 x W 
0.698 x lo-’ 0.123 x 10” 0.199 x 10-l 0.112 x 1w 

0.175 x 10-I 0.283 x 108 0.472 x 1O-2 
0.171 x 10-l 0.278 x 108 0.961 x lo-% 
0.170 x 10-l 0.276 x 108 0.142 x 10-l 
0.150 x 10-l 0.252 x 10” 0.200 x 10-l 

0.935 x 10’ 
0.103 x 10’ 
0.143 x 10’ 
0.121 x 106 

Table continued 
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TABLE II (continued) 

Trajectory x-position 

7 = 0.7 x IO-10 
1 
2 
3 
4 

7 = 0.6 x 10-l” 
1 
2 
3 
4 

7 = 0.5 x IO-l0 
1 
2 
3 
4 

0.250 x 10-l 0.372 x lOa 0.450 x 10-Z 0.126 x 10’ 
0.275 x 10-l 0.395 x 108 0.921 x lo-? 0.165 x 10’ 
0.272 x lo-’ 0.391 x 108 0.137 x 10-I 0.199 x 10’ 
0.273 x lo-’ 0.391 x 108 0.199 x 10-I 0.333 x 106 

0.355 x 10-l 0.476 x IO8 0.407 x 10-s 0.307 x 10’ 
0.354 x 10-l 0.468 x 10s 0.883 x 1O-2 0.253 x 10’ 
0.351 x IO-’ 0.464 x 108 0.133 x 10-l 0.247 x 10’ 
0.352 x 10-l 0.464 x lo* 0.198 x 10-l 0.575 x 106 

0.461 x 10-l 0.548 x lo* 0.333 x 10-Z 0.216 x 10’ 
0.466 x 10-l 0.555 x 108 0.823 x lo-* 0.247 x 10’ 
0.463 x 10-l 0.556 x lo8 0.127 x 10-l 0.258 x 10’ 
0.464 x 10-l 0.558 x IO* 0.197 x 10-l 0.639 x 10” 

x-velocity y-position y-velocity 

TABLE III 

Beam Results After Fifth Iteration for Trajectories of Table II 

Calculated beam potentials (V) 

f 0.0167 427 2078 4097 6324 8700 
y-position 0.0100 461 2119 4173 6421 8668 

0.0033 490 2157 4250 6751 8361 

x-position -+ 0.005 0.015 0.025 0.035 0.045 

True beam potentials (Eq. (V.l))(V) 

465 2009 3969 6216 8690 

x-position --f 0.005 0.015 0.025 0.035 0.045 

Calculated beam current density (A/m3 

969 965 980 960 970 

x-position ---f 0.005 0.015 0.025 0.035 0.045 

(True beam density = 942 amps/m*) 
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FIG. 4. Space-charge density versus iteration. 

degree of accuracy. The convergence properties of the system are illustrated in 
Fig. 4. 

Due to singularities in the gradient at the end-points of the boundary segments, 
the initial conditions on the trajectories are very critical. Small errors at this point 
tend to be magnified by the time a trajectory reaches its termination. For example, 
the same initial velocity 0.187 x IO7 m/set was used for trajectories starting at 
y$ = o.o05i, x = 0.002, 0.003, and 0.004 but the terminal results (charge-free) are 
as follows 

start at x = 0.002 start at x = 0.003 start at x = 0.004 

terminal y-position 

at x G 0.045 

i=l 0.0030 0.0024 0.0020 
i=2 0.0072 0.0066 0.0063 
i=3 0.0097 0.0097 0.0097 
i=4 0.0101 0.0117 0.0123 

These trends were also present after the program calculated the distributed beam 
charge and moved the trajectories closer to the theoretical true solution (compare 
part A and part B of Table II). Some attempts were ako made to start the trajec- 

5Wr3/4-8 
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tories without x-velocity, but the results were very poor, hence, the small initial 
electron energy shown in Table II was important. This initial energy is a small 
percentage of the maximum beam energy, so it is a valid approximation. A general 
rule applicable to large, detailed simulations would be to use a refined boundary 
in the vicinity of the cathode then start the electrons from one boundary segment 
away from the cathode with the energy of the field at that point. This would yield 
good trajectory results. 

In this example problem, the IBM 360 model 60 computer operating time was 
70 set to set up the example and calculate C-l. An additional 20 set was required 
to calculate trajectories and charge distributions for eight iterations. This is a 
“first-pass” programming effort and could be improved. 

6. CONCLUDING REMARKS 

The theories of Sections 2-4 were essentially verified with the example of 
Section 5. However, the example also indicated some restrictions when applying 
the integral equation methods to general problems. Among the first of these 
considerations is the number of and the length of the segments which comprise 
the boundary of the device. A second consideration is the number of assumed 
charge cylinders. If one assumes a greater number of segments and cylinders than 
necessary, the computer running time will be accordingly greater with some 
increase in accuracy. The example problem did not indicate any computer 
“round-off” errors using a 32-bit machine. Therefore, one could refine the bound- 
aries and segments by orders of magnitude before machine errors began to affect 
the calculation. When the number of charge cylinders effectively in the beam was 
increased from 10 to 15, there was a significant increase in accuracy. An improve- 
ment in accuracy was gained by refining the boundary in the vicinity of x = 0, 
y = 0.0 from original lengths of 0.01 to those indicated in Fig. 3. This is the region 
of very low electron velocity and is accordingly sensitive to gradient errors. For 
general problems this area should be refined compared to “far out” regions, 
for example near segments #5 and #14. 

Another consideration of the integral equation method is the singularity which 
exists at the end points of the boundary segment. While the dipole assumption 
allows one to use the Green’s function at the center of a boundary segment, the 
fields and especially the gradients (e.g. see Eq. (17)) are not calculable at the end 
points. In the example of Section 5, initial conditions for the trajectories were 
assumed a small distance away from the cathode. When an attempt was made to 
“start electrons from rest” along the cathode, large errors appeared for motion 
tangential to the boundary segment even when the starting point was not in the 
vicinity of a segment endpoint. 
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There are several advantages in using the integral equation formulation as 
compared to, for instance, a finite difference approach. The principal advantage 
is that the C matrix of Eq. (8) uses N boundary segments, and, hence, the matrix 
is N x N while the equivalent finite difference system matrix is N2/16 x N2/16. 
These matrices must be inverted and the inverse used repeatedly in the process of 
iterating to calculate the beam. Hence, larger simulations will be more efficient 
using integral equation methods. A second major advantage is the gradient is 
available in the integral equation method while it must be approximated in a finite 
difference scheme. Even though the contributions of all boundary and distributed 
charges must be included using the integral equation method, this is an efficient 
“DO LOOP” in a computer program and does not consume much time. 

In the integral equation approach, as well as any other method to calculate an 
electron beam, there are many “rules of thumb” or “computing experience” such 
as the best number of boundary segments, number of trajectories, good starting 
guesses for the beam, etc. which may be used to reduce the cost of computation. 
Given a range of applications, these techniques will develop in the future for the 
integral equation approach. 
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